Horner makes HUGE claim about Red Bull unbeaten season

Christian Horner has claimed that Red Bull CAN go the entire 2023 season unbeaten, but has targeted next weekend’s race at Silverstone as a vital challenge for the team to overcome.

Max Verstappen cruised home to victory at the Austrian Grand Prix to claim his seventh victory this year. With Sergio Perez winning the only other two grands prix, Red Bull have had a lock on the top step this term.

Questions over whether anybody is able to prevent Red Bull from winning every single race this season have grown with each passing weekend.

READ MORE: Horner lays down law for Verstappen and Perez after Red Bull CLASH in sprint race

And Horner for one now believes that the team are more than capable of doing so, but has warned of the dangers of Silverstone ahead of next weekend’s British Grand Prix.

Horner: Red Bull CAN go season unbeaten

Christian Horner is concerned about the upcoming British Grand Prix over Red Bull’s chances of an unbeaten season

“It drives me nuts when you ask those questions,” he told Sky Sports when asked about the possibility of an unbeaten season. “We can only take it one race at a time. Can we? Yes. Will we? Who knows.

“Reliability, weather, Silverstone next week is going to be epic. It’s going to be fantastic there. Who knows what obstacles there could be. We saw what happened there last year.

“It’s a race we haven’t won since Mark [Webber] back in 2012, so that’s a big race for us on this calendar.”

Although Horner might be forgetting Verstappen’s victory there in 2020, he is right in thinking that the track has not been a happy hunting ground for Red Bull in recent years.

The two-time world champion will no doubt will be looking to continue his dominant form in the RB19 when he takes to the legendary UK track next time out.

READ MORE: Marko admits Ferrari have strongest engine but explains why it’s not good for them

Get the source article here

Leave a Reply

Your email address will not be published. Required fields are marked *